Aldosterone increases the apical Na+ permeability of toad bladder by two different mechanisms.
نویسندگان
چکیده
The aldosterone-induced augmentation of Na+ transport in toad bladder was analyzed by comparing the hormonal actions on the transepithelial short-circuit current and on the amiloride-sensitive 22Na+ uptake in isolated membrane vesicles. Incubating bladders with 0.5 microM aldosterone for 3 hr evoked more than a 2-fold increase of the short-circuit current (because of the activation or insertion of apical amiloride-blockable channels) but had no effect on the amiloride-sensitive Na+ transport in apical vesicles derived from the treated tissue. A longer incubation (e.g., 6 hr) produced an additional augmentation of the short-circuit current, which was accompanied by about a 3-fold increase of the channel activity in isolated membranes. The stimulatory effect of aldosterone sustained in vesicles was inhibited by the antagonist spironolactone (present at 1000-fold excess) and the protein synthesis inhibitor cycloheximide (1 microM). In addition, triiodothyronine and butyrate, previously reported to partly inhibit the aldosterone-induced increase in short-circuit current, blocked the hormonal effect in vesicles. It is suggested that aldosterone elevates the apical Na+ permeability of target epithelia by two different mechanisms: a relatively fast effect (less than or equal to 3 hr), which is insensitive to triiodothyronine or butyrate and is not sustained by the isolated membrane, and a slower or later (greater than 3 hr) response blocked by these reagents, which is preserved by the isolated membrane. The data also indicate that these processes are mediated by different nuclear receptors.
منابع مشابه
Amiloride-sensitive trypsinization of apical sodium channels. Analysis of hormonal regulation of sodium transport in toad bladder
Incubation of the mucosal surface of the toad urinary bladder with trypsin (1 mg/ml) irreversibly decreased the short-circuit current to 50% of the initial value. This decrease was accompanied by a proportionate decrease in apical Na permeability, estimated from the change in amiloride-sensitive resistance in depolarized preparations. In contrast, the paracellular resistance was unaffected by t...
متن کاملThe Site of the Stimulatory Action of Vasopressin on Sodium Transport in Toad Bladder
Vasopressin increases the net transport of sodium across the isolated urinary bladder of the toad by increasing the mobility of sodium ion within the tissue. This change is reflected in a decreased DC resistance of the bladder; identification of the permeability barrier which is affected localizes the site of action of vasopressin on sodium transport. Cells of the epithelial layer were impaled ...
متن کاملControl of Na+ and water absorption across vertebrate "tight epithelia by adh and aldosterone.
Salt and water balance in vertebrates in controlled by the release of two blood borne hormones: aldosterone and antidiuretic (ADH). It is the purpose of this chapter to review the mechanisms (at the plasma membrane level) by which these hormones cause an increase in salt (sodium) and water movement in the target tissues. The primary effect of aldosterone is to increase the Na+ permeability of t...
متن کاملTransepithelial water flow regulates apical membrane retrieval in antidiuretic hormone-stimulated toad urinary bladder.
Antidiuretic hormone (ADH) increases the osmotic water permeability (Posm) of toad urinary bladder. This increase is believed to be produced by fusion of intracellular vesicles called aggrephores with the granular cell apical plasma membrane. Aggrephores contain intramembrane particle aggregates postulated to be water channels. ADH-stimulated Posm is decreased by osmotic gradient exposure, whic...
متن کاملThe effect of aldosterone on the accumulation of adenosine 3':5'-cyclic monophosphate in toad bladder epithelial cells in response to vasopressin and theophylline.
Vasopressin and theophylline both increase the content of adenosine 3':5'-cyclic monophosphate (cAMP) in epithelial cells of the urinary bladder of toads (Bufo marinus). Incubation of the tissue with 0.2 muM aldosterone markedly increases this response to the two agents; incubation for a similar time without steroid reduces the response. The permeability responses (sodium transport and water fl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 85 19 شماره
صفحات -
تاریخ انتشار 1988